Vengineerの妄想

人生を妄想しています。

OpenCV 3.3のDNN


OpenCV 3.3のリリースノートから
 The main news is that we promoted DNN module from opencv_contrib to the main repository, 
 improved and accelerated it a lot. An external BLAS implementation is not needed anymore. 

 For GPU there is experimental DNN acceleration using Halide (http://halide-lang.org). 
 The detailed information about the module can be found in our wiki: Deep Learning in OpenCV.

 OpenCV can now be built as C++ 11 library using the flag ENABLE_CXX11. 
 Some cool features for C++ 11 programmers have been added.

 We've also enabled quite a few AVX/AVX2 and SSE4.x optimizations in the default build of OpenCV 
 thanks to the feature called 'dynamic dispatching'. 
 The DNN module also has some AVX/AVX2 optimizations.

 Intel Media SDK can now be utilized by our videoio module to do hardware-accelerated video encoding/decoding. 
 MPEG1/2, as well as H.264 are supported.

 Embedded into OpenCV Intel IPP subset has been upgraded from 2015.12 to 2017.2 version, 
 resulting in ~15% speed improvement in our core & imgproc perf tests.

 ・DNNモジュールがcontribからmainに昇格!外部のBLAS無しでも性能改善も。
 ・GPU利用時は、Halideを使ってDNNをアクセラレート。。。え、GPUだけなの?

Deep Learning in OpenCVによると、
サポートするフレームワークは、Caffe 1、TensorFlow、Torch/PyTorch。
Chainerはサポートしていないのね。

Halide利用は、OpenCL時なので、CUDAではないのね。

これによると、CPUでもHalide使えるのね。。。
でも、特別速いわけではssor (RoCC) accelerators for Rocket Chip]